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1. INTRODUCTION

During the last two decades we have witnessed an intensive development
of the subject of infrapolynomials on sets w C C. As we recall, an infrapoly­
nomial on w is a polynomial pEP = {,n +L: ak,n-k} such that there
exists no other q E P for which qm = 0 for' E w' = g E w: pm = O} and
I qml < Ipmr for' E w - w'. A leader in this development was Professor
Walsh, the man whom we are honoring and of whom I was privileged to be the
first Ph. D. student.

In the present paper we attempt a parallel development for harmonic
infrapolynomials on three-dimensional sets. Our results will be expressed in
terms of three coordinate systems in R3: rectangular (x, y, z); cylindrical
(x, P, ~) with

and spherical (r, (), ~) with

y = P cos~, z = P sin~;

x = r cos (), P = r sin (). (1.1)

By an axisymmetric/unction in R3 we mean one that is independent of~; that
is, a function which assumes the same value at all points of the circle x = X o ,
P = Po [abbreviated: circle (xo , Po)]. As the domain of such a function, we
take an axisymmetric set Q in R3; that is a set such that, if point
(xo , Po , ~o) E Q, also point (xo , p, ~) E Q for all p and ~, 0 :(; p :(; Po and
o :(; ~ :(; 21T. Thus an axisymmetric set Q may consist of points on the x-axis,

*The work on this paper was done partly under N.S.F. grant No. GP-19615. Abstract
appeared in Notices, Amer. Math. Soc. 117 (1970), 1072.
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circular disks having their centers on the x-axis and their planes perpendicular
to the x-axis, and the interiors of surfaces of revolutions which are cut in a
single circle by any plane perpendicular to the x-asis. The meridian section
wee of Q is an axiconvex region, meaning that ~ EO w implies
;\, + (1 - .\) ~ EO (}) for all real A, 0 ='( ,\ ~ l.

Let us first consider axisymmetric harmonic polynomials H(x, p) of
degree 11. As is well known [5, p. 254], every such polynomial can be written
in the form

'n

H(x, p) = L ajriPj(x/r),
i=Q

where Plu) is the Legendre polynomial of degree j.
Of special importance is the class

H = {H(x, p): an = I} (1.3)

of axisymmetric harmonic polynomials with leading coefficient of one and
therefore strictly of degree n. Let us compare two polynomials P(x, p) E H
and Q(x, p) E H on a given axisymmetric set Q in R3 relative to some suitably
defined norm II H(x, p)il. We say that Q is an underpolynomial of Pan Q if

Ii Q(x, p)li < II P(x, p)11 0.4)

for all circles (x, p) C Q. Let us denote by U(P, Q) the class of all under­
polynomials of P on Q. If U(P, Q) = 0 for some P E H, we say that P is an
axisymmetric harmonic infrapolynomial on Q.

In the sequel we shall investigate the properties of the class I(D) ofaxisym­
metric harmonic infrapolynomials on a given axisymmetric set D. We shall
determine some conditions on P E H in order that P E I(D) and also deterraine
the location of the zeros of all P E I(D) in relation to the set Q. In order to
do this, we shall bring together the methods of two hitherto di~joint disci­
plines the theory of infrapolynomials on sets wee and the theory of a
certain integral operator, whose development is largely due to Professor
Stefan Bergman; see [1 and 2].

2. INTEGRAL REPRESENTATIONS FOR H(x, p) AND Ii H(x, p)ii

Let us define as the associate of H(x, p) the polynomial

n

hm = L ak'l.:,
k~O

Thus ~n is the associate of rnPn(xjr).

an = I, SEC. (2.1 )
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In view of the Whittaker formula [4, p. 312-315],

j
2,,-

rkPk(x/r) = (l/21T) 0 (x + ip cos ty' dt,

we have the result:

(2.2)

THEOREM 2.1. Let H(x, p) be an axisymmetric harmonic polynomial and
let h(t) be its associate.

Then

H(x, p) = (l/21T) r"- hex + ip cos t) dt.
o

(2.3)

More generally, iff(t) is analytic in a region w which is the meridian section
of an axisymmetric region Q, then

F(x, p) = (1/21T) r"- f(x + ip cos t) dt
o

(2.4)

satisfies Laplace's equation V 2F = 0 and so is an axisymmetric harmonic
function in Q. In fact, (2.3) and (2.4) are special cases of the operator intro­
duced by Bergman [1, p. 43]:

F(x, y, z) = (l/21Ti) f fe"~ r) r-I dr,
1,.1=1

(2.5)

acting upon the function fa, r) that is analytic in' on some region in C and
continuous in r for I r I = 1. On setting

, = x + (l/2)(yi + z) r + (l/2)(yi - z) r-I, (2.6)

the operator transformsfa, r) into the function F(x, y, z) which together with
PAF(x, y, z) and JF(x, y, z) is harmonic in a certain region of R3.

In view of the integral representation (2.3) for an axisymmetric harmonic
polynomials H(x, p), it is natural to define the norm II H(x, p)/I of H(x, p) by
the formula

II H(x, p)112 = (1/21T) f:"- I hex + ip cos t)i 2 da(t). (2.7)

Here and in the subsequent formulas, aCt) denotes a monotonically increasing
function for 0 ~ t ~ 21T. In the special case aCt) = t, we denote as norm
11 H(x, p)lIt. Thus,

J
2"-

II rnPnex/r)112 = (1/21T) (x2 + p2 cos2 t}n da(t).
o
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More generally, using (1.2), we may expand (2.7) as a hermitian form in the
ak , the coefficients of which form are homogeneous polynomials in x and p.

Let us now consider the harmonic polynomial H(x, p) which has for its
associate

hW =p(~)qm, (2.8)

where p and q are, respectively, polynomials of degrees k and n - k. Let us
denote by P(x, p) and Q(x, p) the axisymmetric harmonic polynomials which
have p(O and q(~), respectively, as associates. To indicate a kind of factor
relation among H(x, p), P(x, p) and Q(x, p), we follow Bergman in defining
the operation

P(x, p)* Q(x, p) = 0/27T) flT p(x + ip cos t) q(x + ip cos t) daCt). (2.9)
o

Thus, whereas the product P(x, p) Q(x, p) is not ordinarily harmonic, the
product P(x, p)* Q(x, p) is harmonic and so the operation converts the
family of axisymmetric harmonic polynomials into an algebra.

Obviously we may express the norm of any axisymmetric harmonic poly­
nomial H(x, p) in terms of the product in (2.9), as follows.

THEOREM 2.2. If H(x, p) is any axisymmetric harmonic polynomial, its
norm 11 H(x, p)11 as defined by (2.7) satisfies the relation

II H(x, p)11 2 = H(x, p)* H(x, p). (2.10)

The product P(x, p)* Q(x, p) is in general not a harmonic function but
serves the purpose of "inner vector product" in the space of axisymmetric
harmonic function.

We now prove the following theorem.

THEOREM 2.3. Let P(x, p) and Q(x, p) be any two axisymmetric hannonic
polynomials. Then

I P(x, p)* Q(x, p)j ~ II P(x, p)llli Q(x, p)ll.

Proof Using (2.9) and Schwarz inequality, we infer that

5
2lT

I P(x, p)* Q(x, p)1 ~ 0/27T) Ip(x + ip cos til q(x + ip cos t)! da
o

~ 10/27T) (r. Ip(x + ip cos t [2 da(2

\ f2r. 11/2
X /(1/27T) 0 I q(x + ip cos t 1

2 du\ .

That is, (2.11) is valid for all (x, p).
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If we choose Q(x, p) = 1 and aCt) = t in Theorem 2.3, we obtain the
following result.

COROLLARY 2.1. IfH(x, p) is an axisymmetric harmonic polynomial, then
for all (x, p)

I H(x, p)1 ~ II H(x, p)llt . (2.12)

As may be seen from (2.7), the equality sign holds in both (2.11) and (2.12)
when p = 0 and when P, Q and H are each constants, but does not seem to
hold in any other case.

3. STRUCTURE OF AXISYMMETRIC HARMONIC INFRAPOLYNOMIALS

We shall now use well-known theorems about the structure of infra­
polynomials on wee in order to get some corresponding results regarding
axisymmetric harmonic infrapolynomials on DC R3. It will be helpful first
to prove the following.

THEOREM 3.1. Let P(x, p) E H, the class of axisymmetric harmonic poly­
nomials defined by (1.3). Let wee be a bounded axiconvex region and Q C R3
be the axisymmetric region having w as its meridian section. If P(x, p) is an
infrapolynomialon the closure n of D, then its associate p(O is an irifrapoly­
nomialon the closure wofw.

Proof If the contrary were true, p would have an underpolynomial q
on w; that is,

I qW! = Ip(~)1

Iq(0! < Ip(~)1

for ~EW' = gEW:PW = O},

for ~ EW - w'.

(3.1)

(3.2)

Let qW be the associate of Q(x, p). Clearly, Q(x, p) E Hand

(

2"
II Q(x, p)/12 = (1/27T) I q(x + ip cos 01 2 da

• 0

< (l/27T) f" Ip(x + i cos t)j2 da = II P(x, p)11 2
•

o

Hence, P(x, p) would have an underpolynomial Q(x, p) on n, contradicting
the hypothesis that P(x, p) is an infrapolynomial on n.

For example, since in C ~n is an infrapolynomial on the unit disk I ~ I ~ 1,
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we infer that, in R3, rnPn(xjr) is an infrapolynomial on the unit ball
x 2 + p2 ~ 1.

We now propose to use Theorem 3.1 in conjunction with the following
well-known result due to Fekete [3, pp. 15-19].

THEOREM 3.2. Let E, a closed bounded set in C containing at least n .+ 1
points, have an infrapolynomial pa), with p(0 =1= 0 for' E E. Then there exist
an integer In with n ~ m ~ 2n, a set of In + 1 constants A.; > 0 with
Ao + Al + '" + Am = 1 and a set of m + 1 points {,o, '1 ,...,'m} C E such
that p(D is a factor of the polynomial

where

m

1m = L Alc1{Jkm
k=f:J

(3.3)

In applying Theorem 3.2, we need to choose E to be a bounded axiconvex.
region w.

For, the integration in (2.3) requires that, if point x + ip E w, then also
point x + ip cos t E W for 0 :(; t ~ 27T. In view of Theorems (3.1) and (3.2),
we are led now to the following theorem.

THEOREM 3.3. Let D be a bounded axisymmetric region in R3 and let
P(x, p) be an n-th degree axisymmetric harmonic infrapolynomialon the closure
of D. Then there exist an integer m, n ~ m ~ 2n, a set of In -+ 1 constants
A; > 0 with Ao + Al + ... + Am = 1, a set of circles

(xo , Po ; Xl , PI ;... ; Xm , Pm} C D,

and an axisymmetric harmonic polynomial G(x, p) ofdegree m - i1 such that

m

L A,;'Jfk(x, p) = P(x, p)* G(x, p),
k=O

·where lJF·,lx, p) is the axisymmetric harmonic polynomial

J
21T m

Pk(x, p) = -(1j27T)(OjOXk) IT (x + ip cos t - x; - ipi) dt.
o ;=0

(3.5)

(3.6)

Proof Since P(x, p) is an infrapolynomial on D, its associate p(D is by
Theorem 3.1 an infrapolynomial on w, the meridian section of Q. By
Theorem 3.2, there is a polynomial g(~) of degree In - n such that
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1m = pm gm. Hence 1m is the associate of P(x, p)* G(x, p), where
G(x, p) is the axisymmetric harmonic polynomial having gm as associate.
On the ohter hand,l(n may be written in the form (3.3) and so we are led
to (3.5).

4. NULL CIRCLES OF AxISYMMETRIC HARMONIC INFRAPOLYNOMIALS

By a null circle (xo , Po) of an axisymmetric harmonic polynomial H(x, p)
we mean that H(xo, Po) = O. A null circle is therefore the intersection of the
level surfaces Sl : !!/lH(x, p) = 0 and S2 : J H(x, p) = O. The set of all null
circles of H(x, p) is finite unless !!/lH(x, p) == 0 or J H(x, p) = 0 when it is the
entire level surface S2 or Sl' respectively.

Let us first recall the following result about the zeros of an infrapolynomial
on wee, due to Fejer [3, p. 23J.

THEOREM 4.1. Let E be a closed bounded set in C and pC,) an infra­
polynomial on E. Then all the zeros ofp lie in the convex hull ofE.

In applying Theorem 4.1, we must again replace E by a bounded axiconvex
region w which is the meridian section of an axisymmetric region Q. Let us
denote by Cl and C2 the two points which are on the real axis, left and right of
w, respectively, and from which w subtends an angle of 7Tjn. Thus, w lies in
the intersection of the two sectors

-(7Tj2n) ~ arg(' - cl ) ~ (7Tj2n),

7T - (7Tj2n) ~ arg(' - c2) ~ 7T + (7Tj2n).

(4.1)

(4.2)

Let us denote by Kl(w, n) and K2(w, n) the cones obtained on revolving
about the axis of reals the two sectors

7T - (7Tj2jn) ~ arg(' - Cl) ~ 7T + (7Tj2n) (4.3)

(4.4)

Alternatively, to obtain, for example, K2(w, n) geometrically, we may take a
double nappe cone of vertex angle 7Tjn and slide it as far as possible to the
left with its axis along the x-axis and yet have the left nappe contain Q. The
right nappe is then K 2(w, n).

We are now in a position to establish

THEOREM 4.2. Let wee be a bounded axiconvex region, which is the
meridian section of Q, an axisymmetric region in R3. Let P(x, p) be an axi-
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symmetric harmonic infrapolynomial on Q. Then 110 circle (x, p) for which
P(x, p) = 0 may lie in either cone:

o < P ~ (-l)i(x - Ci) tan(rrf2n), j = 1,2, (4.5)

where the Cj are defined as above.

Proof By Theorem 3.1, the associate pm of P(x, p) is an infrapolynomial
on wand by Theorem 4.1 all the zeros ~i ,j = 1,2,... , n of pm lie in the
convex hull K of w. The region K also lies in the intersection of the two
sectors (4.1) and (4.1).

Let us write

and thus

P(x, p) = (l/27T) (1T IT (x + ip cos t - ~j) dt.
o 1=1

Let us assume that there is a circle (xo , Po) in the cone K2(w, n) such that
P(xo , Po) = O. Then

where

J
21T

w(t) dt = 0,
o

n

wet) = n (~j - X o - ipo cos t).
i=1

(4.5)

(4.6)

These assumptions require point X o + ipo to lie in sector (4.4) and therefore
point X o + ipo cos t also to lie interior to sector (4.4) for all t, 0 ~ t ::( 27T.
Since '1 E K for j = 1,2,... , n and since K lies in sector (4.2), it follows that

7T - (7T/2n) < arg(~1 - Xo - ipo cos t) < 7T + (7T/2n)

for eachj and, because of (4.6),

n7T - (7T/2) < arg wet) < 117T + (7T/2).

Hence, &[rn1Tiw(t)] > 0 for 0 ~ t ~ 27T and thus &[e-1Ti J~1T wet) dt] > O.
This contradicts (4.5) and thus the assumption that P(xo , Po) = 0 for
circle (xo , Po) c K2(w, n), is invalid. Using similar reasoning for circles
(xo , Po) C K 1(w, n), we complete the proof of Theorem 4.2.

Remark 1. Theorem 4.2 remains valid if II H(x, p)11 as defined by (2.7)
is replaced by any other norm for which Theorem 3.1 is true.
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5. GENERALIZATION TO RN

We shall extend the preceding results to axisymmetric harmonic functions
F(x1 , X2 ,..., XN) of N real variables; that is, solutions of the Laplace equation

N

L12F = L (o2Fj oXj2) = O.
j=1

(5.1)

The axisymmetric case corresponds to the one in which F is a function just
of x and p where

(5.2)

In this case (5.1) reduces to

(ojOX)(pN-2 oFjox) + (ojop)(pN-2 oFjop) = O.

On introducing polar coordinates into Eq. (5.3)

(5.3)

x = r cos (J, p = r sin (J

and using the method of separating variables, we find the basic solutions
of (5.3) in the form

rnp~)(cos (J), 2fL = N - 2, (5.4)

where P~)(cos (J) = p~a.a)(cos (J), 2ex = N - 3, and where p;:·f3)(cos (J) and
p~)(cos (J) are, respectively, the Jacobi and Gegenbauer polynomials of
degree n.

We are thus led to consider the axisymmetric harmonic polynomials in RN

n

H(x, p) = L A/jP}"l(xjr),
j=O

(5.5)

with An = 1. For such a polynomial the following holds.

THEOREM 5.1. The harmonic function (5.5) may be written in the form

H(x, p) = 23- Nr(fL)-2 r hex + ip cos t) sinN- 3t dt (5.6)
o

n
h({) = L aj{j, (5.7)

j=O
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Proof The expression (5.5) follows directly from the representation
[2, p. 167]

2l - 2/Lren + 2p.)·n . ...rnPl/L)(COS 8) = j (x -1- lp cos t\1l smN- 3 tat (5.8)
n n! rep.)2 • 0' .I •

We refer to the polynomial in (5.7) as the associate of the polynomial
H(x, p) given by (5.5).

By analogy with Section 2, we define the norm II H(x, p)!i by the expression

II H(x, p)!12 = 23- NT(p.)-2 s: Ihex + ip cos t)!2 sinN-:; t duCt). (5.9)

If now we are given two polynomials P(x, p) and Q(x, p) of type (5.5), we
say that Q(x, p) is an underpolynomial of P(x, p) on an axisymmetric region
Q C RN if II Q(x, p)11 < II P(x, p)11 for all (x, p) E Q and that P(x, p) is an
axisymmetric harmonic infrapolynomial on Q if it has no underpolynomial
Q(x, p) on Q.

By the same reasoning as for Theorem 3.1, we may establish the
following:

THEOREM 5.2. Let wee be a bounded axiconL'ex region and let Q C RN
be the region comprising the loci x = XO , X 2

2 + X:;2 + ... -+- XN2 = P02 for
all X o + ipo E w. If P(x, p) is an axisymmetric harmonic infrapolynomial on
Q, its associate p(O is an infrapolynomial on w.

Again, since (5.6) differs from (2.3) principally because of the nonnegative
factors 23- Nr(p.)-2 sinN- 3t in (5.5), we may use the same reasoning as for
Theorem 4.2 to show the following theorem to be valid.

THEOREM 5.3. Let wee be a bounded axiconvex in C and let Q C RN be
the region comprising the loci Xl = X O , X22 + X 3

2 +- ... + XN 2 = P02 for all
Xo + ipo E w. If P(x, p) is an axisymmetric harmonic infrapolynomial Oil l'J,
then no locus (xo , Po) for which P(x, p) = 0 has points in either of
the cones

(5.10)

where the c; are defined as for Theorem 4.2. for j = 1, 2.

Also results analogous to Theorems 2.3 and 3.3 are valid, but their
statement and proof are left to the reader.
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6. EXTENSION TO CERTAIN OTHER HARMONIC INFRAPOLYNOMIALS IN R3

Let us finally consider harmonic polynomials of the form

n

F(x, y, Z) = L Aljpr<n-iJ(xfr) cos m(n - j)cp, (6.1)
j~J

where An = 1; m and J are integers with m > 0, J)?; [mnf(m + 1)], and
P/(cos (J) is the "associated Legendre function" [4, p. 323]. Clearly, F(x, y, z)
is a harmonic polynomial, but not ordinarily axisymmetric. We may show that
a representation of F(x, y, z) in the form (2.5) is possible on choosing as
associate

where
n

10m = L Qj'j = '''iJ.a)
j=J

with

Qj = [j + m(n - j)] !fj!] A j

and' given by (2.6) or, since T = eti, equivalently, by

(6.2)

(6.3)

, = x + iCy cos t + z sin t) = x + ip cos(t - cp). (6.4)

We may deduce the desired relation directly from the formula [4, p. 326]

. C + k)' f2" .
rnPnk(COS (J) = ;!(27T)' 0 (x + ip cos t)n e-ktz dt.

That is,

J
2"

F(x, y, z) = (lf27T) f(x + ip cos(t - gJ), eti) dt.
o

(6.5)

We next define the norm /I F(x, y, z)11 in terms of the variables x, y, z or
x, p, gJ in such a way that the norm has the integral representation

f
2"

II F(x, y, z)11 2 = (lf27T) 0 If(x + ip cos (t - gJ), eti )1 2 duCt)· (6.6)

We then say that F(x, y, z) is an infrapolynomial on a given region Q C R3
if no polynomial G(x, y, z) of the same type as (6.1) exists such that
II G(x, y, z)/I < /I F(x, y, z)11 for all (x, y, z) E Q.
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By reasoning similar to that in the proof of Theorem 3.1, we can now
establish the following.

THEOREM 6.1. Let wee be a bounded axiconvex region and let Q C R.3
be the axisymmetric region lvhose meridian cross section is w. If the harmonic
polynomial F(x, y, z) given by (6.1) is an infrapolynomial on Q, then the corre­
sponding polynomialfC') in (6.3) is an infrapolynomialon w.

According to Theorem 4.1, the zeros of the infrapolynomial

n-J

flm = n (~- 'J
j=1

lie in the convex hull K of w. Accordingly, since

n-J
f(~, r) = e-mntieJmti,J I1 (emti~ - L)

j=1

(6.8)
n-J

f(~, r) = ~J n (~ - ~je-mti)
j~1

the zeros 'je-mti therefore lie in the disk I , I :(; 0, where i) = max I , i for
'EW.

If now F(x, y, z) is an infrapolynomial on Q and if F(xo , Yo ,zo) = 0,
then according to (6.5) and (6.8),

t T

w(t) dt = 0,
o

where

n-J

wet) = (0 - X o - ipo cos(t - CPo))! n [~je-mti - X o - ipo cos(t - <Po)]'
j~1

From here 011, the reasoning is similar to that for Theorem 4.2. We thus
arrive at the following result.

THEOREM 6.2. Let DC R3 be an axisymmetric region whose meridian
section is a bounded axiconvex region w.

Let 0 = max I , I for' E w. If F(x, y, z) giLlen by (6.1) is a harmonic
infrapolynomial on D, then no point (x, y, z) for which F(x, y, z} = 0 lies in
either of the cones:

o < p :(; ±xtan(rrj2n) - 8 sec(7Tj2n). (6.9)
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